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It is a real pleasure to dedicate this paper to Professor Josef Paldus on the occasion of his 70th
anniversary in recognition of his important contribution to various domains of the quantum theory of
molecular electronic structure. The quantum chemistry community greatly benefits from his works on
nonrelativistic and relativistic electronic systems via second quantization and field-theoretical
approaches, diagrammatic methods, Lie-like and Clifford-like algebraic techniques. His numerous
results on the many-electron correlation problem, on the configuration interaction method, on the
coupled-cluster theory, and on density matrix calculations should be a source of inspiration for young
theoretical chemists. The present author is very indebted to Prof. Paldus for interesting discussions and
the kind hospitality extended to him on the occasion of several fruitful visits at the Mathematics
Department of the University of Waterloo. Merci beaucoup Jo.

The Lie algebra su(2) of the classical group SU(2) is built from two commuting quon alge-
bras for which the deformation parameter is a common root of unity. This construction
leads to (i) a not very well-known polar decomposition of the generators J– and J+ of the
SU(2) group, with J+ = J−

† = HUr where H is Hermitean and Ur unitary, and (ii) an alternative
to the {J2,Jz} quantization scheme, viz., the {J2,Ur} quantization scheme. The representation
theory of the SU(2) group can be developed in this nonstandard scheme. The key ideas for
developing the Wigner–Racah algebra of the SU(2) group in the {J2,Ur} scheme are given. In
particular, some properties of the coupling and recoupling coefficients as well as the
Wigner–Eckart theorem in the {J2,Ur} scheme are examined in great detail.
Keywords: Wigner–Eckart theorem; Hermitean; Oscillator algebras; Quantum mechanics;
Quantum chemistry.

The concepts of symmetry (introduced in a group theoretical context in the
1930’s), of supersymmetry (introduced in a supergroup context in the
1970’s) and of deformations (introduced in a bi-algebra context in the
1980’s) are of paramount importance for quantum chemistry and/or quan-
tum physics. These concepts are often used in the exploration of dynamic
systems as for example the Coulomb system and the oscillator system
which can be viewed as two paradigms for the study of atomic and molecu-
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lar interactions1,2. In these directions, the works of Paldus3 and its collabo-
rators on the second quantization method, the unitary group approach and
its extension by means of Clifford algebras proved to be very useful in nu-
merous domains of theoretical chemistry.

In recent years, the use of deformed oscillator algebras proved to be use-
ful for many applications of quantum mechanics. For instance, one- and
two-parameter deformations of oscillator algebras and Lie algebras were ap-
plied to statistical mechanics4 and to molecular and nuclear physics5.

It is the purpose of this work to apply deformed oscillator algebras or
quon algebras to the representation theory and the Wigner–Racah algebra
of the SU(2) group. The notion of deformation is very familiar to the theo-
retician. In this connection, quantum mechanics may be considered as a
deformation (the deformation parameter being the rationalized Planck con-
stant h) of classical mechanics. In the same vein, relativistic mechanics is, to
some extent, another deformation (with the inverse of the velocity of light
c–1 as deformation parameter) of classical mechanics. The idea of a deforma-
tion of oscillator algebra and of Lie algebra also relies on the introduction
of a deformation parameter q such that the limiting situation where q = 1
corresponds to the nondeformed algebraic structure.

The organization of this paper is as follows. Section 1 is devoted to some
generalities on the notion of a Wigner–Racah algebra of a finite or compact
group. In Section 2, we construct the Lie algebra of SU(2) from two quon al-
gebras A1 and A2 corresponding to the same deformation parameter q taken
as a root of unity. Section 3 deals with an alternative to the {J2,Jz} scheme of
SU(2), viz. the {J2,Ur} scheme, and with the basic elements for the represen-
tation theory of SU(2) in this scheme. Finally, we develop in Section 4 the
Wigner–Racah algebra of SU(2) in the {J2,Ur} scheme.

Throughout the present work, we use the notation [A, B] for the commu-
tator of A and B. As usual, z* denotes the complex conjugate of the number
z and A† stands for the Hermitean conjugate of the operator A.

1. WIGNER–RACAH ALGEBRA OF SU(2)

The mathematical structure of a Wigner–Racah algebra (WRa) associated
with a group takes its origin in the works by Wigner6 on a simply reducible
group, with emphasis on the ordinary rotation group, and by Racah7 on
chains of groups of type SU(2l + 1) ⊃ SO(2l + 1) ⊃ SO(3), mainly with l =
2, 3. From a practical point of view, the WRa of a group deals with the alge-
braic relations satisfied by its coupling and recoupling coefficients. From a
more theoretical point of view, the WRa of a finite or compact group can be
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defined to be the infinite-dimensional Lie algebra spanned by the Wigner
unit operators (i.e., the operators whose matrix elements are the coupling
or Clebsch–Gordan or Wigner coefficients of the group)8.

The WRa of the SU(2) group is well known. It is generally developed in
the standard basis {|jm〉 : 2j ∈ N, m = –j, –j + 1, …, j} arising in the simulta-
neous diagonalization of the Casimir operator J2 and of one generator, say
Jz, of SU(2). Besides this basis, there exist several other bases. Indeed, any
change of basis of type

| | |j jm jm j
m j

j

µ µ〉 = 〉 〈 〉
=−
∑ (1)

(where the (2j + 1) × (2j + 1) matrix with elements 〈 jm|jµ〉 is an arbitrary uni-
tary matrix) defines another acceptable basis for the WRa of SU(2). In this
basis, the matrices of the irreducible representation classes of SU(2) take a
new form as well as the coupling coefficients (and the associated 3-jm sym-
bols). As a matter of fact, the coupling coefficients (j1j2m1m2|jm) are simply
replaced by

( | ) ( | )j j j j j m m jm
m j

j

m j

j

m j

j

1 2 1 2 1 2 1 2

2 2

2

1 1

1

µ µ µ =
=−=−=−
∑∑∑

〈 〉 〈 〉 〈 〉j m j j m j jm j1 1 1 1 2 2 2 2| * | * |µ µ µ (2)

when passing from the {jm} quantization to the {jµ} quantization while the
recoupling coefficients, and the corresponding 3(n – 1) – j symbols, for the
coupling of n (n > 2) angular momenta remain invariant.

The various bases for SU(2) may be classified into two types: group–sub-
group type and nongroup–subgroup type. The standard basis corresponds
to a group–subgroup type basis associated with the chain of groups
SU(2) ⊃ U(1). Another group–subgroup type basis may be obtained by re-
placing U(1) by a finite group G* (generally the double, i.e., spinor group,
of a point group G of molecular or crystallographic interest). Among the
SU(2) ⊃ G* bases, we may distinguish: the weakly symmetry-adapted bases
for which the basis vectors are eigenvectors of J2 and of the projection oper-
ators of G* (e.g., see9) and the strongly symmetry-adapted bases for which
the basis vectors are eigenvectors of J2 and of an operator defined in the en-
veloping algebra of SU(2) and invariant under the group G (e.g., see10). We
shall see that the basis for SU(2) described in the present paper interpolates
between the group–subgroup type and the nongroup–subgroup type.
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2. A QUON REALIZATION OF THE ALGEBRA su(2)

Two Quon Algebras

The concept of quon takes its origin in the replacement of the commuta-
tion (sign –) and anticommutation (sign +) relations

a–a+ ± a+a– = 1 (3)

by the relation

a–a+ – qa+a– = 1 (4)

where q is a constant. Following the works11, we define two commuting
quon algebras Ai = {ai–, ai+, Ni} with i = 1 and 2 by

ai–ai+ – qai+ai– = 1 , [Ni,ai±] = ±ai± , N Ni i
† = (5)

( ) ( )a ai
k

i
k

+ −= = 0 (6)

∀ ∈ ∀ ∈ =x A x A x x1 1 2 2 1 2 0, : [ , ] (7)

where

q
k

= 





exp
2πi

with k ∈ N\{ , }0 1 . (8)

Equation (5) corresponds to the a la Arik and Coon11 relations defining a
quon algebra except that, in the present work, q is a root of unity instead of
being a positive real number. The deformation parameter q is the same for
each of the algebras A1 and A2 so that A1 and A2 can be considered as two
copies of the same quon algebra. Equation (6) constitutes nilpotency condi-
tions which are indeed compatibility relations to account for the fact that
q is not a positive number (remember qk = 1). Equation (7) reflects the com-
mutativity of the algebras A1 and A2. The generators ai± and Ni of A1 and A2
are linear operators. As in the classical case q = 1, we say that ai+ is a cre-
ation operator, ai– an annihilation operator and Ni a number operator (with
i = 1, 2). However, the operator ai+ cannot be considered as the adjoint of
the operator ai– except for k = 2 and k → ∞. In contrast, the operator Ni can
be taken to be a Hermitean operator for any value of k in N\{0,1}. It should
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be observed that Ni is different from ai+ai– except for k = 2 and k → ∞. Note
that the case k = 2 (⇒ q = –1) corresponds to fermion operators and the case
k → ∞ (⇒ q = –1) to boson operators. In other words, each of the algebras Ai
describes fermions for q = –1 and bosons for q = 1 with Ni = ai+ai– for fer-
mions and bosons (i = 1, 2).

To close this subsection, let us mention that algebras similar to A1 and A2
with N1 ≡ N2 were introduced by Daoud, Hassouni and Kibler11 for defining
k-fermions which are, like anyons, objects interpolating between fermions
(corresponding to k = 2) and bosons (corresponding to k → ∞).

Representation of the Quon Algebras

We can find several Hilbertian representations of the algebras A1 and A2. In
this work, we take the representation of A1 ⊗ A2 defined by the following
action

a n n n n a k n1 1 2 1 2 1 21 1 0+ += + − =| , ) | , ), | , ) (9)

a n n n n n a nq1 1 2 1 1 2 1 21 0 0− −= − =| , ) [ ] | , ), | , ) (10)

a n n n n n a n kq2 1 2 2 1 2 2 11 1 1 0+ += + + − =| , ) [ ] | , ), | , ) (11)

a n n n n a n2 1 2 1 2 2 11 0 0− −= − =| , ) | , ), | , ) (12)

N n n n n n N n n n n n1 1 2 1 1 2 2 1 2 2 1 2| , ) | , ), | , ) | , )= = (13)

on a finite (Fock) space Fk = {|n1,n2) : n1,n2 = 0, 1, …, k – 1} of dimension
dim Fk = k2. In Eqs. (10) and (11), we use

[ ]x
q
qq

x

= −
−

1
1

for x ∈ R (14)

which yields

[ ] ... * [ ]n q q n Nq
n

q= + + + ∈ =−1 0 01 for and (15)

as a particular case. We shall also use the q-deformed factorial defined by
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[n]q! = [1]q[2]q ... [n]q for n ∈ N*, [0]q! = 1 (16)

so that [n + 1]q! = [n]q![n + 1]q for n ∈ N.
The space Fk is a unitary space with a scalar product noted ( | ). The k2

vectors |n1,n2) are taken in a form such that

( , | , ) ( , ) ( , )′ ′ = ′ ′n n n n n n n n1 2 1 2 1 1 2 2δ δ (17)

(i.e., they constitute an orthonormalized basis of Fk). The space Fk turns
out to be the direct product F(1) ⊗ F(2) of two truncated Fock spaces F(i) =
{|ni) : ni = 0, 1, …, k – 1} of dimension dim F(i) = k (i = 1, 2) corresponding
to two truncated harmonic oscillators. At this stage, we realize why the
cases k = 0 and k = 1 should be excluded. The case k = 1 would give trivial
algebras Ai with ai– = ai+ = 0 (i = 1, 2) and the case k = 0 would lead to a
nondefined value of q.

Two Important Operators

We now define the two linear operators

H N N= +1 2 1( ) (18)

and

U a
k

a a
kr

q

kr r= +
−













++ −
−

−1 1
1

2

1
2

1
2

1
1

1
e e

i iφ φ

[ ] !
( )

[ −













+
−

1 2
1

] !
( )

q

ka (19)

where the arbitrary real parameter φr is taken in the form

φ πr k r r= − ∈( )1 with R . (20)

It is immediate to show that the action of H and Ur on Fk is given by

H n n n n n n

n k ii

| , ) ( )| , )

, , , ... ,

1 2 1 2 1 21

0 1 2 1 1

= +

= − =for with , 2 (21)

and

U n n n n n k nr | , ) | , )1 2 1 2 1 21 1 1 0= + − ≠ − ≠for and (22)
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U k n n nr
r| , ) | , )− = − ≠1 0 1 02 2 2

1
2e for

iφ
(23)

U n n k n kr
r| , ) | , )1 1 10 1 1 1

1
2= + − ≠ −e for

iφ
(24)

U k k n k nr
r| , ) | , )− = − = − =10 0 1 1 01 2e for andiφ . (25)

The operators H and Ur satisfy interesting properties. First, it is obvious
that the operator H is Hermitean. Second, the operator Ur is unitary. In ad-
dition, the action of Ur on the space Fk is cyclic. More precisely, we can
check that

( )U Ir
k r= e iφ (26)

where I is the identity operator.
From the Schwinger work on angular momentum12, we introduce

J n n M n n= + = −1
2

1
21 2 1 2( ), ( ) . (27)

Consequently, we can write

| , ) | , )n n J M J M1 2 = + − . (28)

We shall use the notation

| | , )JM J M J M〉 ≡ + − (29)

for the vector |J + M,J – M). For a fixed value of J, the label M can take 2J + 1
values M = –J, –J + 1, …, J. Equations (28) and (29) proved to be of central
importance for the connection between angular momentum and a coupled
pair of ordinary harmonic oscillators12. We guess here that they shall play
an important role for connecting the Lie algebra of su(2) to a coupled pair
of truncated harmonic oscillators.

For fixed k, the maximum value of J is

J J k= = −max 1 (30)

and the following value of J

J j k= = −1
2

1( ) (31)
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is admissible. For a given value of k ∈ N\{0,1}, the 2j + 1 = k vectors |jm〉 be-
long to the vector space Fk. Let ε(j) be the subspace of Fk, of dimension
dim ε(j) = k, spanned by the k vectors |jm〉 . We can thus associate the space

ε( ) {| : , , ... , }j jm m j j= 〉 = − − +1 1 (32)

for j = 1
2 , 1, 3

2 , … to the values k = 2, 3, 4, …, respectively. The case ε(j = 0)
can be seen to correspond to the limiting situation where k → ∞.

The action of the operators H and Ur on the space ε(j) can be described by

H jm j m j m jm| ( )( )|〉 = + − + 〉1 (33)

and

U jm m j jm m j j jr
r| [ ( , )]| ( , ) |〉 = − + 〉 + − 〉1 1δ δ φe i (34)

which are a simple rewriting, in terms of the vectors |jm〉 , of Eqs (21) and
(22)–(25), respectively. The subspace ε(j) of Fk is thus stable under H and Ur.
Furthermore, the action of the adjoint Ur

† of Ur on the space ε(j) is given by

U jm m j jm m j jjr
r† | [ ( , )]| ( , ) |〉 = − − − 〉 + − 〉1 1δ δ φe–i . (35)

We can check that the operator H is Hermitean and the operator Ur is
unitary on the space ε(j). Equation (26) can be rewritten as

( )U Ir
j r2 1+ = e iφ (36)

which reflects the cyclic character of Ur on ε(j).
Finally let us mention that, as far as the operators H, Ur and Ur

† act on the
space ε(j), one can write

H j m j m jm jm
m j

j

= + − + 〉 〈
=−
∑ ( )( )| |1 (37)

U jm jm j j jjr
m j

j
r= + 〉 〈 + − 〉 〈

=−

−

∑ | | | |1
1

e+iφ (38)

U jm jm jj j jr
m j

j
r† | | | |= − 〉 〈 + 〉 〈 −

=− +
∑ 1

1

e–iφ (39)

where we have introduced a la Dirac projectors on ε(j).
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The SU(2) Generators

We are now in a position to give a realization of the Lie algebra of the
group SU(2) in terms of the generators of A1 and A2. Let us define the three
operators

J HU J U Hr r+ −= =, † (40)

and

J N Nz = −1
2 1 2( ) . (41)

It is straightforward to check that the action on the vector |jm〉 of the opera-
tors defined by Eqs. (40) and (41) is given by

J jm j m j m jm+ 〉 = − + + + 〉| ( )( )|1 1 (42)

J jm j m j m jm− 〉 = + − + − 〉| ( )( )|1 1 (43)

and

J jm m jmz | |〉 = 〉 . (44)

Consequently, we have the commutation relations

[ , ] , [ , ] , [ , ]J J J J J J J J Jz z z+ + − − + −= + = − = 2 (45)

which correspond to the Lie algebra of SU(2).
We have here an unusual result for Lie algebras. In the context of defor-

mations, we generally start from a Lie algebra, then deform it and finally
find a realization in terms of deformed oscillator algebras. Here we started
from two q-deformed oscillator algebras from which we derived the
nondeformed Lie algebra su(2).

3. AN ALTERNATIVE BASIS FOR THE REPRESENTATION OF SU(2)

An Alternative to the {J2,Jz} Scheme

The decomposition (40) of the shift operators J+ and J– in terms of H and Ur
coincides with the polar decomposition introduced in lit.13 in a completely
different way. This is easily seen by taking the matrix elements of Ur and H
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in the {J2,Jz} quantization scheme and by comparing these elements to the
ones of the operators ϒ and JT in lit.13. We are thus left with

H J= T (46)

and, by identifying the arbitrary phase ϕ of lit.13 with φr = 2πjr = π(k – 1)r,
we obtain that

U r = ϒ (47)

so that Eq. (40) corresponds to J+ = JTϒ and J– = ϒ†JT.
It is immediate to check that the Casimir operator

J J J J J J z
2 21

2
= + ++ − − +( ) (48)

of su(2) can be rewritten as

J H J J U H U J Jz z r r z z
2 2 2 2 2= + − = + +† (49)

or

J N N N N2
1 2 1 2

1
4

2= + + +( )( ) (50)

in terms of the generators N1 and N2 of A1 and A2, respectively. It is a sim-
ple matter of calculation to prove that J2 commutes with Ur for any value of
r. (Note that the commutator [Ur,Us] is different from zero for r ≠ s.) There-
fore, for r fixed, the commuting set {J2,Ur} provides us with an alternative to
the familiar commuting set {J2,Jz} of angular momentum theory. It is to be
observed that the operators J2 and Ur can be expressed as functions of the
generators of A1 and A2 (see Eqs. (19) and (50)).

Eigenvalues and Eigenvectors

The next step is to determine the eigenvalues and eigenvectors of Ur. The
eigenvalues and the common eigenvectors of the complete set of commut-
ing operators {J2,Ur} can be easily found. This leads to the following result.
The spectra of the operators Ur and J2 are given by

U j r q j rr | ; | ;α αα〉 = 〉−

J j r j j j r2 1| ; ( )| ;α α〉 = + 〉 (51)
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where

| ; |j r
j

q jmm

m j

j

α α〉 =
+

〉
=−
∑1

2 1
(52)

with the range of values

α = − − + − + ∈ ∈jr jr jr j j r, , ... , , ,1 2 2 N R (53)

modulo 2j + 1. The parameter q in Eqs. (51) and (52) is

q
j

=
+







exp i

2
2 1

π
(54)

(cf. Eq. (8) with k = 2j + 1 for k ∈ N\{0,1} and k → ∞ for j = 0).
The label µ used in Section 1 is here of the form µ ≡ α;r with a fixed value

of r. It is important to note that the label α in Eqs. (51) and (52) goes, by
step of 1, from –jr to –jr + 2j; it is only for r = 1 that α goes, by step of 1,
from –j to j.

The inter-basis expansion coefficients

〈 〉 =
+

=
+ +







jm j r

j
q

j j
mm| ; expα π αα1

2 1

1

2 1

2
2 1

i (55)

(with m = –j, –j + 1, …, j and α = –jr, –jr + 1, …, –jr + 2j) in Eq. (52) define
a unitary transformation that allows to pass from the well-known ortho-
normal standard spherical basis

S jm j m j j j= 〉 ∈ = − − +{| : , , , ... , }2 1N (56)

to the orthonormal nonstandard basis

B j r j jr jr jr jr = 〉 ∈ = − − + − +{| ; : , , , ... , }α α2 1 2N (57)

for the space

ε ε= ⊕
=j

j
0 11

2
, , , ...

( ) (58)

where ε(j) is a subspace of constant angular momentum j (see Eq. (32)). For
fixed r, the expansion coefficients satisfy the unitarity property
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〈 〉 〈 ′ 〉 = ′
=−
∑ jm j r jm j r

m j

j

| ; * | ; ( , )α α δ α α (59)

and

〈 〉 〈 ′ 〉 = ′
=−

− +

∑ jm j r jm j r m m
jr

j j

| ; | ; * ( , )α α δ
α

2

. (60)

Then, the development

| | ;jm
j

q j rm

jr

jr j

〉 =
+

〉−

=−

− +

∑1

2 1

2
α

α

α (61)

with

m j j j j= − − + ∈, , ... , ,1 2 N (62)

is the inverse of Eq. (52) and makes it possible to pass from the nonstan-
dard basis Br to the standard basis S.

The representation theory of SU(2) can be transcribed in the {J2,Ur}
scheme. In this scheme, the rotation matrix elements for the rotation R of
SO(3) assumes the form

D Dr
j m m j

mm
m j

j

m j

j

R
j

q R( ) ( )( ) ( )αα
α α

′
− + ′ ′

′
′ =−=−

=
+ ∑∑1

2 1
(63)

in terms of the standard matrix elements D(j)(R)mm′. Then, the behavior of
the vector |jα;r〉 under an arbitrary rotation R is given by

P j r j r RR r
j| ; | ; ( )( )α α α α

α

〉 = ′ 〉 ′
′
∑ D (64)

where PR stands for the operator associated with R. If R is a rotation around
the z-axis, Eq. (64) takes a simple form. Indeed, if R(ϕ) is a rotation of an
angle

ϕ π=
+

p
j
2

2 1
with p = 0, 1, 2, …, 2j (65)

around the z-axis, we have

P j r j rR ( ) | ; | ;ϕ α α〉 = ′ 〉 (66)

where

′ = −α α p , mod(2j + 1) . (67)
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Consequently, the set {|jα;r〉 : α = –jr, –jr + 1, …, –jr + 2j} spans a represen-
tation of dimension 2j + 1 of the cyclic subgroup C2j+1 of SO(3). It can be
seen that this representation is nothing but the regular representation of
C2j+1. The nonstandard basis Br presents some characteristics of a group–
subgroup type basis in the sense that the set {|jα;r〉 : α = –jr, –jr + 1, …, –jr + 2j}
carries a representation of a subgroup of SO(3). However, this representa-
tion is reducible except for j = 0. Therefore, the label µ ≡ α;r does not corre-
spond to some irreducible representation of a subgroup of SU(2) or SO(3) ≡
SU(2)/Z2 so that the basis Br also exhibits some characteristics of a nongroup–
subgroup type basis.

The behavior of the vector |jα;r〉 under the time-reversal operator K is
given by

K j r
j j

j r
r

| ; | ;α
α α

α
α

〉 =
′







′ 〉
′
∑ (68)

where

j j

j
q

j j

m mr

m m

m j

j

m j

j

α α
α α

′






=
+ ′







− + ′ ′

′ =−=−
∑1

2 1 ∑ . (69)

Here, the 2-jm symbol (also called a 1-jm symbol for evident reasons) reads

j j

m m
m mj m

′





= − ′ −+( ) ( , )1 δ (70)

and defines the metric tensor introduced by Wigner6. (The normalization
chosen for the Wigner metric tensor is the one of Edmonds14.)

The 2-jα metric tensor allows us to pass from a given irreducible represen-
tation matrix of SU(2) to its complex conjugate. Indeed, we have

D Dr
j

r

r
jR

j j
R

j j( ) * ( )( )
*

( )ββ αα
αα β α β α′ ′

′

=




 ′ ′




∑ 
r

(71)

(the two j’s in the 2-jα metric tensor are identical because the irreducible
representation class (j) of SU(2) is identical to its complex conjugate).

For any value of r, the basis Br is an alternative to the spherical basis S of
the space ε. Two bases Br and Bs with r ≠ s are thus two equally admissible
orthonormal bases for ε. The vectors of the bases Br and Bs are common
eigenvectors of {J2,Ur} and {J2,Us}, respectively. The overlap between the
bases Br and Bs is controlled by
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〈 ′ 〉 = ′
+

−

−
+

j r j s j j
j

j

α β δ α β π

α β π
; | ; ( , )

sin( )

sin( )

1
2 1

2 1

(72)

with α = –jr, –jr + 1, …, –jr + 2j and β = –js, –js + 1, …, –js + 2j.

Some Examples

As an illustration, we continue with some examples concerning the sub-
spaces ε(1

2 ) and ε(1).
The case j = 1

2 . For r = 1, Eq. (52) gives

1
2

1
2

1
1

2

1
2

1
2

1
2

1
2

1− = − + +





−; ρ ρ

1
2

1
2

1
1

2

1
2

1
2

1
2

1
2

1+ = − + +





−; ρ ρ . (73)

where ρ = e
i π

4 . For r = 0, we have

1
2

0 0
1

2

1
2

1
2

1
2

1
2

; = − + +





1
2

1 0
1

2

1
2

1
2

1
2

1
2

2 2; = − + +





−ρ ρ (74)

The case j = 1. By putting ω = e
i 2π

3 we obtain

| ; ( | | | )1 11
1

3
1 1 10 1 11− 〉 = − 〉 + 〉 + + 〉−ω ω

| ; (| | | )10 1
1

3
1 1 10 1 1〉 = − 〉 + 〉 + + 〉

| ; ( | | | )1 11
1

3
1 1 10 1 11+ 〉 = − 〉 + 〉 + + 〉−ω ω (75)

for r = 1 and
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| ; (| | | )10 0
1

3
1 1 10 1 1〉 = − 〉 + 〉 + + 〉

| ; ( | | | )11 0
1

3
1 1 10 1 11〉 = − 〉 + 〉 + + 〉−ω ω

| ; ( | | | )12 0
1

3
1 1 10 1 11〉 = − 〉 + 〉 + + 〉−ω ω (76)

for r = 0.
We thus foresee that it is quite possible to achieve the construction of the

WRa of the group SU(2) in the {J2,Ur} scheme. This furnishes an alternative
to the WRa of SU(2) in the SU(2) ⊃ U(1) basis corresponding to the {J2,Jz}
scheme.

4. A NEW APPROACH TO THE WIGNER–RACAH ALGEBRA OF SU(2)

In this section, we give the basic ingredients for the WRa of SU(2) in the
{J2,Ur} scheme. The Clebsch–Gordan coefficients (CGc’s) or coupling coeffi-
cients adapted to the {J2,Ur} scheme are defined from the SU(2) ⊃ U(1)
CGc’s adapted to the {J2,Jz} scheme. The adaptation to the {J2,Ur} scheme
afforded by Eq. (52) is transferred to SU(2) irreducible tensor operators. This
yields the Wigner–Eckart theorem in the {J2,Ur} scheme.

Coupling Coefficients in the {J2,Ur} Scheme

When passing from the {J2,Jz} scheme to the {J2,Ur} scheme, the CGc’s
(j1j2m1m2|j3m3) are replaced by the coefficients

( | )
( )( )( )

j j j
j j j

r1 2 1 2 3 3

1 2 3

1

2 1 2 1 2 1
α α α =

+ + +

q q q j j m m j mm m m

m j

j

m j
1 2 3 1 2 1 2 3 3

1 1 2 2 3 3

3 3

3

2

− − −

=−=−
∑ α α α ( | )

2

2

1 1

1 j

m j

j

∑∑
=−

(77)

where the qa’s are given in terms of ja by

q
ja =
+







exp i

2
2 1

π
, a = 1, 2, 3 (78)

(cf. Eq. (54)).
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The new CGc’s (j1j2α1α2|jα)r in the {J2,Ur} scheme are simple linear combi-
nations of the SU(2) ⊃ U(1) CGc’s. The symmetry properties of the coupling
coefficients (j1j2α1α2|jα)r cannot be expressed in a simple way (except the
symmetry under the interchange j1α1 ↔ j2α2). Let us introduce the fr sym-
bol via

f
j j j

j
j j jr

j
r

1 2 3

1 2 3

2

1

2 3 2 3 1 11
1

2 1
3

α α α
α α α







 = −

+
( ) ( | ) * . (79)

Its value is multiplied by the factor (–1)j1+j2+j3 when its two last columns are
interchanged. However, the interchange of two other columns cannot be
described by a simple symmetry property. Nevertheless, the fr symbol is of
central importance for the calculation of matrix elements of irreducible
tensor operators via the Wigner–Eckart theorem in the {J2,Ur} scheme (see
Eq. (106) below).

Following lit.9, we define a more symmetrical symbol, namely the f r sym-
bol, through

f
j j j

j j j
r

1 2 3

1 2 3 1 2 3

1

2 1 2 1 2 1α α α






 =

+ + +( )( )( )

q q q
jm m m

m j

j

m j

j

m j

j

1 2 3
11 1 2 2 3 3

3 3

3

2 2

2

1 1

1
− − −

=−=−=−
∑∑∑ α α α j j

m m m
2 3

1 2 3







 . (80)

The 3-jm symbol on the right-hand side of Eq. (80) is an ordinary Wigner
symbol for the SU(2) group in the SU(2) ⊃ U(1) basis. It is possible to pass
from the fr symbol to the f r symbol and vice versa by means of the metric
tensor introduced in Section 3. Indeed, we can check that

f
j j j j j

f
j j j

r

r

r
1 2 3

1 2 3

3 3

3 3

3 2 1

3
α α α α αα







 =

′








′′
∑ α α α3 2 1









*
(81)

or alternatively

f
j j j j j

f
j j j

r

r

r
1 2 3

1 2 3

1 1

1 1

1 3 2

1
α α α α αα







 =

′








′′
∑ α α α1 3 2









*
. (82)

The f r symbol is more symmetrical than the fr one. The f r symbol exhibits
the same symmetry properties under permutations of its columns as the
3-jm Wigner symbol: Its value is multiplied by (–1)j1+j2+j3 under an odd per-
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mutation and does not change under an even permutation. In other words,
we have

f
j j j

f
j j j

r abc r
a b c

a b c

1 2 3

1 2 3α α α
ε

α α α






 =







 (83)

where εabc = 1 or (–1)j1+j2+j3 according to whether abc corresponds to an even
or odd permutation of 123.

The orthogonality properties of the highly symmetrical f r symbol easily
follow from the corresponding properties of the 3-jm Wigner symbol. Thus,
we have

( )
*

2 13
1 2 3

1 2 3

1 2 3

1 2 33 3

j f
j j j

f
j j j

r
j

r+








′ ′
∑ α α α α α αα 




 =

= ′ ′δ α α δ α α1 2( , ) ( , )1 2 (84)

and

f
j j j

f
j j j

r r
1 2 3

1 2 3

1 2 3

1 2 31 2
α α α α α αα α









′
′







 =∑ *

=
+

⊗ ⊗ ′ ′1
2 1

0
3

1 2 3 3 3 3 3j
j j j j j∆( | ) ( , ) ( , )δ δ α α (85)

where ∆(0|j1 ⊗ j2 ⊗ j3) = 1 or 0 according to whether the Kronecker product
(j1) ⊗ (j2) ⊗ (j3) contains or does not contain the identity irreducible repre-
sentation class (0) of SU(2). Note that the real number r is the same for all
the f r symbols occurring in Eqs (84) and (85).

The values of the SU(2) CGc’s in the {J2,Ur} scheme as well as of the fr and
f r coefficients are not necessarily real numbers. For instance, we have the
following property under complex conjugation

f
j j j j j j j

r

r

1 2 3

1 2 3

1 1

1 1

2 2

2′ ′ ′






 =

′








′α α α α α α α
* *

2

3 3

3 31 2 3









′






∑

r r

j j* *
α αα α α

f
j j j

r
1 2 3

1 2 3α α α






 . (86)
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Then, the behavior of the f r symbol under complex conjugation is com-
pletely different from the one of the ordinary 3-jm Wigner symbol. In this
respect, we have

f
j j j

f
j j j

r
j j j

r
1 2 3

1 2 3

1 2 3

1 2 3

1 1 2 3

α α α α α α






 = −




+ +*
( ) 



 . (87)

Hence, the value of the f r coefficient is real if j1 + j2 + j3 is even and pure
imaginary if j1 + j2 + j3 is odd.

It is to be noted that the 2-jα symbol introduced in Section 3 is a particu-
lar case of the f r symbol since we have

j j
j f

j j

r

rα α α α′






= +
′







2 1
0

0
. (88)

Consequently, the orthogonality property

j j j j

r rα β α β
δ β β

α





 ′






= ′∑ *
( , ) (89)

and the symmetry property

j j j j

r

j

r′






= −
′





α α α α

( )1 2 (90)

follow from the corresponding properties of the f r symbol.
The case r = 1 deserves a special attention. In that case, we have specific

relations because the label α may be 0 for j integer. For example, the value
of

f
j j j

j j j
r

1 2 3

1 2 3
0

1

2 1 2 1 2 10 0





=

+ + +( )( )( )

j j j

m m mm j

j

m j

j

m j

j
1 2 3

1 2 33 3

3

2 2

2

1 1

1 







=−=−=−
∑∑∑ (91)

is equal to 0 if j1 + j2 + j3 is odd.
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Recoupling Coefficients in the {J2,Ur} Scheme

The recoupling coefficients of the SU(2) group are rotational invariants14.
Therefore, they can be expressed in terms of coupling coefficients of SU(2)
in the {J2,Ur} scheme. For example, the 9-j symbol can be expressed in terms
of f r symbols by replacing, in its decomposition in terms of 3-jm symbols,
the 3-jm symbols by f r symbols. On the other hand, the decomposition of
the 6-j symbol in terms of f r symbols requires the introduction of six metric
tensors corresponding to the six arguments of the 6-j symbol. These matters
shall be developed by following the approach initiated in lit.9

We start with the case of the 6-j symbol. Relations involving the 6-j
Wigner symbol (or W Fano and Racah coefficient7) and f r symbols, with
four f r symbols, can be easily derived. First, the 6-j symbol can be expressed
as

W
j j j

j j j

j j j j

r

1 2 3

4 5 6

1 1

1

2 2

2 2







 =

′








′





α α α α1

*



′






∑∑

′ r r

j j* *3 3

3 3α ααα allall

j j j j j j

r r r

4 4

4 4

5 5

5 5

6 6

6 6α α α α α α′








′








′








* * *

f
j j j

f
j j j

r r
1 2 3

1 2 3

1 5 6

1 5 6α α α α α α








′ ′








f
j j j

f
j j j

r r
4 2 6

4 2 6

4 5 3

4 5 3′ ′








′ ′








α α α α α α
(92)

which involves 0+4 f r symbols (no f r symbol on the left-hand side and four
on the right-hand side). With the help of Eq. (86), Eq. (92) can be rewritten
as

W
j j j

j j j

j j j j

r

1 2 3

4 5 6

4 4

4 4

5 5

5 5







 =

′








′





α α α α

*



′






∑∑

′ ′ ′ r r

j j* *6 6

6 66
α ααα α α4 5 all

f
j j j

f
j j j

r r
1 3 3

1 2 3

1 5 6

1 5 6α α α α α α








′








*

f
j j j

f
j j j

r r
4 2 6

4 2 6

4 5 3

4 5 3′








′








α α α α α α
. (93)
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An expression involving 1+3 f r symbols is

f
j j j

W
j j j

j j j
j jr

1 2 3

1 2 3

1 2 3

4 5 6
1 20

α α α














 = ⊗ ⊗∆( | j3 )

j j j j j j

r r r

4 4

4 4

5 5

5 5

6 6

6 6α α α α α α′








′








′








* * *

α α αα α α4 5 4 5 66

∑∑
′ ′ ′

f
j j j

f
j j j

f
j j j

r r r
1 5 6

1 5 6

4 2 6

4 2 6

4 5 3

α α α α α α′








′








α α α4 5 3′






 . (94)

We also have a 2+2 relationship

( )2 13
1 2 3

1 2 3

4 5 3

4 5 33 3

j f
j j j

f
j j j

j
r r+












∑
α α α α α α α 








 =

*
W

j j j

j j j
1 2 3

4 5 6

=
′









′








′








j j j j j j

r r

4 4

4 4

5 5

5 5

6 6

6 6α α α α α α
* *

r

*

αα α α4 5 66

∑∑
′ ′ ′

f
j j j

f
j j j

r r
1 5 6

1 5 6

4 2 6

4 2 6α α α α α α′ ′








′






 (95)

and a 3+1 relationship

( )2 13
4 4

4 4

5 5

5 5

6 6

6 6

j
j j j j j j

r r

+
′









′








′

α α α α α α




∑∑∑

′ ′ ′ rj α αα α αα 4 5 1 563 3

f
j j j

f
j j j

f
j j j

r r r
1 2 3

1 2 3

1 5 6

1 5 6

4 5 3

α α α α α α








′








*

′ ′








α α α4 5 3

*

W
j j j

j j j j
j j j f

j j j
r

1 2 3

4 5 6 6
1 5 6

4 2 6

4

1
2 1

0






 =

+
⊗ ⊗∆( | )

α α 2 6α






 . (96)

By using the orthonormality of the f r symbol in conjunction with Eq. (96),
we would obtain a 4+0 relationship which turns out to be the well-known
orthonormality relation7 for the W coefficient.
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We continue with the 9-j Wigner symbol (or X Fano and Racah coeffi-
cient7). Relations involving six f r symbols and one 9-j symbol can be ob-
tained in a straightforward way. First, we have the very symmetrical expres-
sion of the type 0+6

X

j j j

j j j

j j j

f
j j j

r

11 12 13

21 22 23

31 32 32

11 21 31
















=

α α α α α αα 11 21 31

12 22 32

12 22 32















∑ f

j j j
r

all

f
j j j

f
j j j

r r
13 23 33

13 23 33

11 12 13

11 12 13α α α α α α
















*

f
j j j

f
j j j

r r
21 22 23

21 22 23

31 32 33

31 32 33α α α α α α












* 



*
. (97)

Other relations with six f r symbols can be derived by combining Eq. (97)
and the orthonormality relations of the f r symbols. For instance, we have
the relation of the type 1+5

f
j j j

X

j j j

j j j

j j
r

31 32 33

31 32 33

11 12 13

21 22 23

31 3

α α α








2 32

31 32 330

j

j j j















= ⊗ ⊗∆( | )

f
j j j

r
11 21 31

11 21 3121 22 2313
α α αα α αα α α11 12







∑∑

f
j j j

f
j j j

r r
12 22 32

12 22 32

13 23 33

13 23 33α α α α α α
















f
j j j

f
j j j

r r
11 12 13

11 12 13

21 22 23

21 22 23α α α α α α












* 



*
(98)

and the relation of the type 2+4

( )
*

2 131
11 21 31

11 21 31

31 32

31 31

j f
j j j

f
j j

j
r r+






∑

α α α α
j

X

j j j

j j j

j j j

33

31 32 33

11 12 13

21 22 23

31 32 33

α α α























=
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f
j j j

f
j j j

r r
12 22 32

12 22 32

13 23 33

13 23 33α α α α α α














∑∑

α αα α12 22 2313

f
j j j

f
j j j

r r
11 12 13

11 12 13

21 22 23

21 22 23α α α α α α












* 



*
. (99)

Relations involving coupling and recoupling coefficients are of consider-
able interest for the calculation of matrix elements. In particular, W and X
coefficients occur in matrix elements of scalar product and tensor product
of two irreducible tensor operators.

Wigner–Eckart Theorem in the {J2,Ur} Scheme

Irreducible tensor operators. From the spherical components Tm
k( ) (with m =

–k, –k + 1, …, k) of an SU(2) irreducible tensor operator T(k), we define the
2k + 1 components

T
k

q Tr
k m

m
k

m k

k

α
α

;
( ) ( )=

+ =−
∑1

2 1
(100)

with

α = − − + − + ∈kr kr kr k k, , ... , ,1 2 2 N (101)

where r is fixed in R. The behavior of T r
k

α ;
( ) under a rotation R is described by

P T P T RR r
k

R r
k

r
j

α α α α
α

;
( )

;
( ) ( ) ( )−
′ ′

′

= ∑1 D . (102)

Following Racah7, given two SU(2) irreducible tensor operators T(k1) and
U(k2), we can define the tensor product {T(k1)U(k2)}(k) of components

{ } ( | )( ) ( )
;

( )
;

( )
;

(T Uk k
r

k
r r

k
r

kk k k T U1 2 1

2

2
1 2 1 2α α αα α α

1
= )

α α1 2

∑ . (103)

As a particular case, we get the scalar product

( ) ( ) { }( ) ( ) ( ) ( )
;

( )T U T Uk k k k k
rk⋅ = − +1 2 1 0

0 . (104)

More specifically, we have

( ) ( )( ) ( )
;

( )
;

( )T Uk k k

r

r
k

r
kk k

T U⋅ = −
′





 ′

′
∑1

α α α α
αα

(105)

which can be identified with the scalar product introduced by Racah7.
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Matrix elements of tensor operators. In the {J2,Ur} scheme, the Wigner–
Eckart theorem reads

〈 〉 =τ α τ α τ τα1 1 1 2 2 2 1 1 2 2
1j r T j r j T j f
j

r
k k

r; | | ; ( || || );
( ) ( ) j k2

1 2α α α






 (106)

where (t1j1||T(k)||τ2j2) denotes an ordinary reduced matrix element. Such a
reduced matrix element is clearly basis-independent. The reduced matrix el-
ement in Eq. (106) is identical with the one introduced by Racah7. It is a ro-
tational invariant that can be in general expressed in terms of basic in-
variants (e.g., reduced matrix element of Wigner unit operator, W and X
coefficients). Therefore, it does not depend on the labels α1, α2 and α. On
the contrary, the f r coefficient in Eq. (106), defined by Eq. (79), depends on
the labels α1, α2 and α. The information on the geometry is entirely con-
tained in the f r coefficient.

5. CONCLUDING REMARKS

The main results presented in this paper are the following: (i) The non-
deformed Lie algebra su2 may be constructed from two commuting q-
deformed oscillator algebras with q being a root of unity; the latter oscilla-
tor algebras are associated with (truncated) harmonic oscillators having a fi-
nite number of eigenvectors. (ii) This construction leads to the polar de-
composition of the generators J+ and J– of SU(2) originally introduced by
Lévy–Leblond13. (iii) The familiar {J2,Jz} quantization scheme with the
(usual) standard spherical basis {|jm〉 : 2j ∈ N, m = –j, –j + 1, …, j}, corre-
sponding to the canonical chain of groups SU(2) ⊃ U(1), is thus replaced by
the {J2,Ur} quantization scheme with a (new) basis, namely, the nonstan-
dard basis Br = {|jα;r〉 : 2j ∈ N, α = –jr, –jr + 1, …, –jr + 2j}. (iv) The Wigner–
Racah algebra of SU(2) may be developed in the {J2,Ur} scheme.

These various results should be useful in problems involving axial sym-
metry and in the investigation of quantum mechanics on a finite Hilbert
space as developed by several authors15. To make the latter point clear, let
us write S (see Eq. (56)) and Br (see Eq. (57)) as

S s j

j

=
=

∞

0
U (107)

and

B br r
j

j

=
=

∞

0
U (108)
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where sj and br
j are two bases that span the subspace ε(j). It is clear that sj

and br
j are two mutually unbiased bases (MUB’s) in the sense that

| | ; |
dim ( )

〈 〉 =jm j r
j

α
ε

1
. (109)

It is known that the MUB’s are especially useful in the theory of quantum
information. In this respect, a connection between our results and some of
the ones in lit.15 is presently under study.
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